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Abstract. Treatment of electronic stopping via kinetic theory and the orbital local plasma
approximation is extended (from free-standing ordered slabs) to include bulk crystalline targets, and
hence probe their electron momentum distribution. Sensitive computational issues, important for
comparison with experimental data, are addressed. A primary result is unambiguous first-principles
prediction of large gas–solid and film–solid differences in Li stopping. Previous predictions had
involved semi-empirical determination of mean excitation energies. Additionally, a stopping
anisotropy that is separate from and much smaller than familiar channelling and related to the
familiar Compton-profile anisotropy is treated, apparently for the first time. Example calculations
for hexagonal Li and graphite are given.

1. Approximate theories of stopping for extended systems

Extensive effort has been devoted to measuring the stopping power (linear energy loss of an
energetic charged projectile, or, if normalized to the target density, the stopping cross-section)
of elemental systems [1, 2]. Similar effort has been devoted to the theory, calculation and
interpretation of stopping [3,4]. Such calculations are challenging even for the simple case of
a proton projectile treated in the first Born approximation.Withoutthe Bethe approximation,
such a calculation would require that the entire generalized-oscillator-strength (GOS) spectrum
be calculated even for the dilute-gas case [3]. In the Bethe approximation [5], the mean
excitation energy is meant to be calculated from the dipole oscillator strength distribution (the
zero-wavevector GOS distribution). Elsewhere [6], first-principles calculation of the GOS
(at levels of refinement beyond the plane-wave Born approximation [7] and with techniques
rooted in best practice for prediction of molecular structures) for relevant momentum transfers
has been shown to be surprisingly difficult for modern methods even for light isolated atoms.
The problem stems from ubiquitous use of finite-basis-set methods (analytical basis) or their
finite-numerical-grid equivalents. In the case of an analytical basis, it is easy to see that the
calculated GOS must violate the Bethe sum rule at rather low values of momentum transfer.
Similar results have been found, unsurprisingly, for the H2O molecule [8] and other small
molecules [9].

The literature on simple dipole oscillator strength distributions even for single atoms makes
clear the widespread use of approximate calculations: approximate density functional orbitals
in expressions derived for Hartree–Fock wavefunctions, quantum defect orbitals, electron gas
models, etc.
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Treatment of stopping in ordered condensed systems is more demanding than it might seem
from this summary. We have developed and currently are using first-principles,all-electron
codes to calculate the microscopic dielectric function (the analogue for crystals of the GOS).
Others have pursued similarvalence-onlycalculations [10,11]. In both cases, these are quite
large-scale calculations even for simple elemental targets; hence energy-loss calculations for
real material systems of even moderately complicated chemistry and/or geometry are likely to
requirereliable approximate calculations for some time to come.

Proper treatment of shell corrections is another long-standing aspect of stopping
cross-section calculations. These corrections may be formulated either in the aggregate
(conventionally written as theC(v)/Z2 contribution to the stopping number, withZ2 the target
electron number) or orbital by orbital. The orbital-by-orbital treatment can be developed in
terms of orbital mean excitation energies (i.e., orbital partial sums of generalized oscillator
strengths or equivalent). That formulation has the advantage of introducing substantially more
chemical detail and specificity regarding the target than is provided in a single mean excitation
energy. The technique, as we use it, comes from Sabin and Oddershede’s [12–14] work on
atomic systems; see also [15]. Obviously the challenge of calculation of orbital mean excitation
energies also arises for application of this scheme to real condensed systems.

A specific approach to the mean-excitation-energy problem for complex systems is the
orbital local plasma approximation (OLPA) [16–18], a generalization of the local plasma
approximation (LPA) of Lindhard and Scharff [19]. Essentially the scheme evaluates the
logarithm of the plasma frequency of an electron gas at the full electron density at a spatial
point, weights that logarithm by the electron density for the specific orbital at that point
and integrates. The LPA mean excitation energy is recovered by summing the OLPA mean
excitation energies. See below and the extensive literature on the LPA and variants [20].

To predict stopping for ordered films (periodic boundary conditions in two Cartesian
directions and vacuum boundary conditions in the third) we used the OLPA with Sigmund’s
kinetic theory of stopping [21]. Kinetic theory in summary exploits momentum conservation
via appropriate Galilean transforms to extend a model of scattering by particles initially at rest
to uncorrelated, classical binary collisions involving moving particles. Kinetic theory thus
gives stopping for arbitrary projectile velocity via a kinematic integral over the momentum
distribution of the target particles multiplied by a stopping factor at the corresponding relative
projectile velocity. The momentum distribution can be obtained straightforwardly from an
all-electron treatment of the target ground state. For the case of massive particles scattering
from that electron distribution, the obvious choice of stopping factor is Bethe stopping (a
high-projectile-velocity limiting case). Bethe stopping in conjunction with mean excitation
energies in kinetic theory recovers the aggregate shell correction absent in the elementary
Bethe stopping formula [12, 22]. Individual shell corrections follow from the use of orbital
mean excitation energies; recall the above.

The OLPA coupled with kinetic theory was tested successfully on atoms [17, 18], then
applied to ultra-thin films [23, 24], with input quantities from high-precision, all-electron,
full-potential calculations in the local spin-density approximation to density functional theory
(DFT) [25]. Here we extend the formulation to periodically bounded three-dimensional crystals
with a focus on critical technical and computational points, and present results for crystalline
lithium (hcp) and graphite as important examples of two phenomena: phase effects and subtle
anisotropies in non-channelling proton stopping.
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2. Summary of kinetic theory and the OLPA

Kinetic theory plus the OLPA for a crystal is mostly a straightforward extension of the
ordered-film version [16]. Here we note the points where there are critical differences while
summarizing the notation.

S(v) from kinetic theory (equation (19), reference [21]) in Hartree atomic units (used
except where noted) is

S(v1) =
∫

d3v2 f (v2)
(v1 + (m/M1)v2) · (v1− v2)

v1|v1− v2| S0(|v1− v2|) (1)

with v1, v2 the projectile ion and target electron velocities respectively, all in the target rest
frame.f (v2) is the normalized velocity distribution of the target electrons. As discussed,S0

in the Bethe form is used:

S0(v) = 4π

v2
Z2

1Z2θ(2v
2 − I ) ln

2v2

I
(2)

with Z1, Z2 the projectile charge and target electronic charge per scatterer respectively (a
homonuclear target is assumed for simplicity),I is the mean excitation energy of the target
electron distribution andθ(·) is the Heaviside unit step function. This expression is valid for
2v2 > I at least. (A more refined approach, beyond the first Born approximation, would
include Barkas and Bloch corrections; e.g. equations (96) and (98) in [21].)

Note that the projectile velocity dependence, not just speed, is included, so there are
intrinsic anisotropies. The ordered-film calculations did not explore those anisotropies but
simply assumed normal incidence to the plane of ordering and simplified the expressions
accordingly. Note also that use of a mean-excitation-energy formulation means that only
non-channelling anisotropies in the electron distribution can be treated. All impact parameter
dependence (equivalently, all dependence on the location of the projectile trajectory on the
incident crystalline face) disappears once a treatment based on mean excitation energies is
selected. As properties of the electron distribution alone, such energies obviously have no
explicit impact parameter or trajectory location dependence.

The original LPA [19] is

ln I = (1/Z2)

∫
d3r ρ(r) ln{λ(4πρ(r))1/2}

with ρ(r) the electron number density andλ = √2 an empirical scaling constant. The OLPA
extends the prescription in a way that is most physically obvious for a central-field atom. The
weighting of the logarithm by the whole density is replaced by the density for the atomic orbital
with quantum numbersnl to yield orbital mean excitation energyInl . (Meltzeret al [17, 18]
argued thatλ should be unity for the OLPA, a choice followed here.)

An equivalent partitioning by orbital labels in extended systems, while not totally obvious,
must go consistently to the atomic case in the limit of arbitrarily large lattice spacings. A simple
choice (used previously with the slabs) which does so is to partition the occupied Kohn–Sham
(KS) eigenvalues into ranges. Thus, if the occupied KS bands are betweenεmin andεF (with
εF the Fermi energy), thenW energy ranges are defined as

εl = εmin + (l − 1)
εF − εmin

W
l = 1, . . . ,W + 1. (3)

The approximate orbital mean excitation energy for each range then is

ln Il = 1

ηl

∫
�

d3r ρl(r) ln{(4πρ(r))1/2} (4)
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where� is the unit-cell volume,ρl(r) is the electron number density associated with the KS
eigenvalues in the rangel, ηl is the number of electrons with KS eigenvalues in that range

ηl =
∫
�

d3r ρl(r)

and the total number of electrons per unit cell is∑
l

ηl = Zcell.

The partitioning in (4) has the proper separated-atom limit (mentioned above) if the ranges
bracket bands of appropriate symmetry. It also ensures that the sum of theIl is the LPAI .
Details are in [18].

Correspondingly the Bethe stopping number for rangel is Ll(v) = ln[2v2/Il ] and the
resulting kinetic stopping is

S(v) =
∑
l

Sl(v)

≡ 4πZ2
1Z2

∑
l

∫
d3v2 fl(v2)Ll(|v1− v2|) (v1 + (m/M1)v2) · (v1− v2)

v1|v1− v2|3 (5)

with fl(v2) the electron momentum (velocity) density for KS states with energies in the range
l. Note that (5) preserves the explicit dependence on projectile velocity. For proton projectiles,
m/M1 is small and will be dropped.

3. Electron momentum density

Reliable, rapid calculation ofS(v)s for complicated crystals from (5) depends upon quick,
accurate generation ofρl(r) and fl(v2) plus rapid integration over momentum (velocity).
The underlying DFT solutions were obtained from a precise, efficient, all-electron, full-
potential code, namely the linear combination of Gaussian-type orbitals with fitting functions
methodology (LCGTO–FF) [26] code GTOFF [27]. All-electron methodology together with
orbital mean excitation energies gives stopping contributions from each band on an equal
footing (as distinct from pseudopotential treatments of extended systems), thereby allowing
such subtleties as surface–core-level shift effects to be probed. Full-potential methodology
ensures that any calculated projectile-direction anisotropies are actually in the physical model
and not procedural artifacts.

The LCGTO solution of the KS equation involves Bloch-symmetrized Gaussian basis
functionsφj (r,k) for each contracted Gaussian functionχj of typej at pointk:

φj (r,k) = 1√
Ncell

∑
R

exp(ik ·R)χj (r +R) (6)

(Note: the vectorsk are three or two dimensional depending on whether the ordered system
is a crystal or a slab (ordered film). Both the electron density and the vectorsr are three
dimensional, so for slabs the two-dimensional wavevectors are embedded in 3-space.) The KS
orbitalsϕi,k(r) for bandi at Brillouin zone (BZ) pointk are linear combinations of the Bloch
basis functions

ϕi,k(r) =
∑
j

Cji(k)φj (r,k) (7)

whence

ρl(r) =
∑
i,k

ni,k
∣∣ϕi,k(r)∣∣2 [θ(εl+1− εi,k)− θ(εl − εi,k)] (8)
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with ni,k the occupancy for bandi at BZ pointk.
With omission of the Lam–Platzman correction [28] the momentum density for rangel is

ρl(v) =
∑
i,k

ni,k
∣∣ϕi,k(v)∣∣2 [θ(εl+1− εi,k)− θ(εl − εi,k)]

with the Fourier transform of the KS orbitals given by

ϕi,k(v) = 1√
Ncell�

∫
d3r exp(iv · r)ϕi,k(r). (9)

Ncell is the total number of unit cells in the crystalline periodic volume; for slabs there is a
factor of 2π in the denominator and� refers to a two-dimensional unit cell [16]. Equations
(6), (7) and (9) then give

ρl(v) = 1

�

∑
i

ni,ṽ
[
θ(εl+1− εi,ṽ)− θ(εl − εi,ṽ)

] ∣∣∣∣∣∑
j

Cji(ṽ)

∫
d3r exp(iv · r)χj (r)

∣∣∣∣∣
2

(10)

whereṽ is v reduced to the first BZ. The velocity distribution functionfl(v) in (1) and (5) is
simply

fl(v) = ρl(v)/Zcell.

In principle, bothv andk are continuous. Translational symmetry, manifest inṽ (which
comes fromδv,k+K), forces them to be related on the reciprocal-space lattice. As is customary
with periodic systems, GTOFF solves the KS equations on a separate mesh in the first BZ (or
its irreducible wedge, IBZ);k becomes a discrete variable. The mesh and associated weights
for BZ zone integrals are chosen by a well-known scheme [29]. The combination of these two
discrete meshes results in the integration overv2 in (5) being reduced in the crystalline case to
summation over a discrete mesh in the first BZ displaced by eachK. For the periodic films,
integration over the direction normal to the two-dimensional BZ remains.

To utilize quantities calculated (in GTOFF) on the meshki (and associated weights)
correctly in the evaluation of the velocity integral in (5), the projectile velocity vector must
be treated explicitly. Its orientation has noa priori relationship with the reciprocal-space
symmetries. As is evident from the kinematic factorv1 · (v1 − v2) in (5), the forward
and backward points +v2 and−v2 contribute differently for stopping, even though they are
equivalent in the solution of the KS equations on the BZ mesh for those cases in which the
reciprocal lattice has a mirror plane perpendicular to the ion direction. Evaluation of (5)
therefore in general requires knowledge of solutions to the KS equation on a larger set of
k-points than the set which normally is sampled in the IBZ while solving the KS equations.

A direct but uneconomical remedy would be to treat all of the necessaryk-points compat-
ible with the symmetry of the integrand of (5) with respect tov. Group theory provides the
needed alternative straightforwardly. Consider the effect ofO, a member of the isogonal point
group of the system, operating on the Fourier transform of the KS eigenfunctionϕi,k:

ϕi,k(O
−1v) = 1√

�Ncell

∫
d3r exp(iO−1v · r)ϕi,k(r)

= 1√
�Ncell

∫
d3r ′ exp(iv · r′)ϕi,k(O−1r′)

= 1√
�Ncell

∫
d3r exp(iv · r)Oϕi,k(r)

= 1√
�Ncell

∫
d3r exp(iv · r)ϕ′i,Ok(r).
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The last step is justified because operating onϕi,k(r) with O produces an eigenfunction in
Bloch form withk rotated byOk at the same energy [30]. In the usual case of no degeneracy,
ϕi,k(r) andϕ′i,k(r) can differ at most by a phase factor, whence

ρi,Ok(v) = ρi,k(O−1v).

For degeneracies,ϕi,k(r) andϕ′i,k(r) are related by a unitary transform in the degenerate
subspace

ϕ′l,k(r) =
∑
m

0l,mϕm,k(r)

wherel,m index the degenerate bands. Then one has∑
l

ρl,Ok(v) =
∑
m

ρm,k(O
−1v)

because0 is unitary. The OLPA energy ranges allow degenerate bands at a particular energy
to be summed in a single range, so beyond that degenerate bands require no particular special
treatment. These symmetry considerations reduce the information needed for calculation of the
electron momentum density to only that found in the IBZ. Additional symmetry with respect
to the projectile trajectory, if any, of course could be exploited to reduce further the number of
differentk +K points included in the calculation of the momentum-space integral.

By contrast, recall that the prior work on ordered-film stopping [23] assumed the axis
defined by the projectile velocity to be normal to the film BZ. Such a special axis introduces
no symmetry constraint with respect to the film layer group (2-D space group).

Further computational speed (compared to the prior implementation [23,24]) comes from
analytical Fourier transforms. GTOFF uses Hermite Gaussian basis functions (χj in (10)):

χnα(r) = Nnα ∂n1

∂A
n1
x

∂n2

∂A
n2
y

∂n3

∂A
n3
z

exp(−α |r −A|2)

whereA is the centre of the Gaussian andNnα a normalization constant [31]. The analytical
Fourier transform is∫
χnα(r) exp(iv · r) d3r = Nnα

(
π

α

)3/2

vn1
x v

n2
y v

n3
z in1+n2+n3 exp

(
iv ·A− v2

4α

)
.

4. Results: phase effects, anisotropy

4.1. Lithium films and hcp lithium

An entirely new stopping code was written to implement these extensions and technical
improvements, then checked against the previous hexagonal H and LiN -layer OLPA
calculations [23,24]. Table 1 and figure 1 provide a brief comparison of the two calculations
for Li. (Compare figure 1 with figure 1 in [24].) TheN -layer lattice parameters and basis
sets were taken from [24, 32]. The hcp solid lattice parameters were from Nobelet al [33],
while the basis sets for the solid were constructed by taking the functions for only the inner,
solid-like layers of theN -layer sets in reference [32].

The present calculations, for both crystals and atoms, differ from the prior ones in important
ways. The earlier atomic stopping results were for isolated central-field atoms [18]. The present
atomic values actually are quasi-atomic: they were calculated by expanding the lattice spacing
of the 1-layer toa = 15 au. This procedure has the advantage of using the same code for
all results. More importantly, the previous solid results were determined semi-empirically
by Sabin and Oddershede [14]. They treated the mean excitation energies as quasi-atomic
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Table 1. Mean excitation energiesI in eV, peak values of the stopping cross section in units of
10−15 eV cm2 per atom and velocity (in au) at which that maximum occurs for LiN -layers, hcp Li
and dilute-gas (atomic) stopping. See the text regarding differences in calculational methods for
prior values [24].

Quantity Atom N = 1 N = 2 N = 3 N = 4 Crystal

I1

Present 71.54 71.88 72.04 72.07 72.11 72.14
Prior 71.48 71.93 72.07 72.07 72.11 109.32

I2

Present 3.21 7.08 8.33 8.76 9.12 9.66
Prior 3.42 7.12 8.38 8.92 9.19 10.46

Itot

Present 25.25 34.19 36.18 36.78 37.34 37.55
Prior 25.94 33.25 35.16 35.93 36.29 50.0

Smax

Present 38.78 19.25 16.34 15.68 15.08 14.24
Prior 35.57 19.06 16.00 15.15 14.83 12.72

vmax

Present 0.54 0.79 0.86 0.88 0.89 0.96
Prior 0.55 0.77 0.90 0.96 0.98 0.99

quantities, withI1s extracted from published atomic calculations [34] andI2s from fitting the
isotropic kinetic stopping theory to the tabulated [2] high-energy stopping data. The electron
momentum distribution they derived from experimental isotropic Compton-profile data for
polycrystalline Li.

Extension of OLPA kinetic stopping to treatment of bulk crystals makes possible the
first check of that earlier semi-empirical work entirely independently of experiment. Table 1
shows that the values ofI1, the 1s-band mean excitation energy, differ substantially. The
deficiency in core-level mean excitation energies is intrinsic to OLPA, since it shows up even
for isolated atoms [17]. In contrast, the semi-empirical and OLPA values for the valence band
mean excitation energyI2 differ very little. Therefore the difference between the present and
previous calculated crystalline stopping must arise primarily from the discrepancy in the 1s-
bandI . Other contributions to the difference (use of two different momentum distributions,
polycrystallinity in the semi-empirical value) are likely to be small. This appraisal is supported
by the fact that for proton velocities>2 au, where projectile charge-state effects are known
experimentally to be negligible, the calculated crystalline stopping lies a few per cent above
the measured [35] values (too close to be shown easily in figure 1). If the ratio of the KS
and measured K-shell energies for Li is used to scale the calculatedI1s and Bethe logarithm,
however, agreement is achieved.

Thus the first new result of this work is purely first-principles confirmation of the very large
gas–solid phase effect for Li stopping previously predicted by Sabin and co-workers [14,36].
The present prediction of the ratio of stopping maxima (atom/crystal) is 2.7 while the prior
work [14] found 2.9. The predicted positions of those maxima are altered by less than
4% at most.

Overall the agreement between the present and prior OLPA calculations is quite reasonable.
None of the published conclusions is altered by the differences. In particular, the 1/N linear
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Figure 1. Comparison of proton stopping for hexagonal LiN -layers, the hcp solid and the isolated
atom in units of 10−15 eV cm2 per atom. Normal incidence for theN -layers; [0001] incidence
for the crystal. The present calculation for the bulk uses the theoretical K-shell energy of−45
eV, whereas the experimental energy is−55 eV. A correction (scaling) of the theoreticalI -value
by the ratio of these values and further scaling with the Bethe logarithm (2) explains the slight
overestimation of the experimental stopping [35] by about 4.7% atv = 5 au.

scaling for convergence of the layers toward the bulk value [37]

S(N, v) = S(∞, v) +
1

N
SL(v) (11)

found earlier remains valid. The constant-coefficient values differ by 2% or less and all
but one of the values ofSL(v) behave similarly; see table 2 for values at selected projectile
velocities. (Corresponding conclusions hold for the HN -layers, so those results are not
tabulated here.) The observed changes are consistent with being the cumulative result of
refinements in numerical techniques (both from FILMS to GTOFF and in the previous versus
new implementations of the kinetic OLPA).

We turn to directional dependences. The anisotropy of electronic stopping with respect
to projectile incidence direction, channelling, has been the subject of much study [38].
Channelling calculations frequently utilize potential models (‘string’ potentials) or equivalent
assumptions about sampling the relatively diffuse electron charge density along and near
the channel axis. Such approaches select, implicitly or explicitly, a particular range of
impact parameters (measured from the channel central axis); see for example reference [39].
Anisotropy of this kind, which is associated with the specific location of the projectile trajectory
in the unit cell, is intrinsically inaccessible to a mean-excitation-number formulation, as already
remarked.
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Table 2. Coefficients of the linear fit in 1/N , equation (11), in units of 10−15 eV cm2 per atom.

Quantity v (au) S(∞, v) SL(v)

Present 1.25 13.23 2.23
Prior [37] 13.00 2.32

Present 1.75 10.64 1.02
Prior [37] 10.53 1.11

Present 2.50 8.02 0.53
Prior [37] 7.95 0.53

Present 4.00 5.07 0.20
Prior [37] 5.05 0.21

Present 6.00 3.04 0.09
Prior [37] 3.02 0.09

A distinct (but related) issue is the cumulative anisotropy for all possible impact
parameters, as for example in the recent simulation by van Dijket al [40] and related work
on the inverse first velocity moment ofS(v) by Tielenset al [41] both for Si. Consider two
directions, including inequivalent high-symmetry ones. If all target electrons could be probed
on an equal footing, and hence be selected (as collision partners) without the preference given
to diffuse (valence) states during channelling, whatever stopping anisotropy resulted would
be the least possible for that pair of directions. Call this the minimum stopping anisotropy
(MSA). Closely related physics is the stopping anisotropy related to principal axes in orientable
molecules modelled by Apellet al [42] via jellium ellipsoids and treated earlier by Sauer
et al [43] by polarization propagator calculations of directionally dependent mean excitation
energies.

Equation (5) shows that the MSA will occur for any system without the symmetry of the
full rotation group, e.g. molecules, slabs and solids. (For atomic stopping the effect disappears
a priori (cf. e.g. reference [4]), on averaging over rotational orientations, since the same
rotational averaging occurs in a dilute-gas sample.) Another kind of closely related physics is
in the anisotropic Compton profiles; in both cases, the source of the anisotropy is the electron
momentum-density topology. That source also highlights the distinction from channelling.
The momentum-space formulation (1) implies complete absence of the knowledge of the real-
space location of the ion–electron scattering events. (This characteristic is similar to employing
only the macroscopic element of the inverse dielectric matrix in the dielectricansatz[10,41].)
Because of that absence, the MSA reflects the point group symmetry of the Bravais lattice [44]
in terms of directional dependencies and the integrated effects of bonding upon the scattering
charge distribution. It does not probe the specific atomic site information as would be required
(explicitly or implicitly) for a full microscopic treatment of the channelling phenomenon
(atomic strings, channel centres, dechannelling, etc).

The hcp Li bulk stopping results for table 1 are for protons incident along [0001]. The
calculated MSA magnitude is potentially relevant in at least three ways. Is the MSA in Li large
enough to alter the confirmation of predicted phase effects? Is the use of an expanded-lattice
crystal (or ordered film) to model the gas-phase stopping legitimate? Is the comparison between
calculated and semi-empirical Li crystalline stopping altered substantively by averaging the
new crystalline results over orientations?

Figure 2 shows the calculated MSA as a difference in hcp solid Li for directionsv[0001]



3982 J Wang et al

-0.15

-0.10

-0.05

0.00

0.05

0.10

0 1 2 3 4 5

S
[0

00
1]

-S
[1

1-
20

] (
10

-1
5  e

V
 c

m
2 /a

to
m

)

proton velocity (a.u.)

Figure 2. The MSA for protons on hcp solid Li, in units of 10−15 eV cm2 per atom, for directions
[0001] versus [11̄20].

andv[112̄0], namely

S(v[0001])− S(v[112̄0]).

(The small fluctuations belowv = 2 au are ignorable numerical artifacts.) The MSA is less
than 1%, much smaller than the predicted 270% phase effect difference. It also is much too
small to alter the comparison between first-principles and semi-empirical results or to make
use of an expanded 1-layer as a proxy for a truly isolated, isotropic Li atom an unreliable
practice.

4.2. Graphite

An interesting and much-studied case of highly anisotropic chemical bonding is graphite.
Because of the dominance ofπ -electron bonding in graphite, a significant anisotropy forq
parallel versus perpendicular to thec-axis is expected. Such anisotropy is seen experimentally
in the Compton profile [45, 46]. Figure 3 shows the calculated proton stopping curves in the
direction [0001] for equilibrium graphite. Lattice parameters and basis sets are from the recent
GTOFF calculation by Boettger [47]. Figure 4 gives the MSA difference curve. Compared
with the Li results of figure 2, the main difference is in the low-energy region where the
projectile velocity is comparable to the orbital velocity of the target electrons. In graphite,
the [11̄20] stopping dominates over that for [0001], with the converse situation in hcp Li.
The size of the MSA reaches about 1%, which is of the same order as the anisotropy in the
Compton profile [45]. Indeed, this difference curve has a strong qualitative resemblance to
the observed Compton-profile difference curve of figure 2 in Tyket al [45], clearly suggestive
of their common physical origin in the electron momentum density. Once again the small
fluctuations belowv = 2 au are ignorable numerical artifacts.
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The MSA would be expected to arise primarily from valence electrons. Within the kinetic
theory limitations regarding real-space location of the scattering events already discussed, the
most that can be done to assess the relative importance of valence contributions is to compare
the valence-only and all-electron stopping anisotropies. As figure 3 shows, the dominant
effect of removing the core is a simple shift downward ofS(v). Unsurprisingly, that shift is
essentially isotropic; were we to plot the valence-only version of figure 4 the result would
be virtually indistinguishable. We therefore venture a somewhat more speculative remark.
The contribution of the nuclear energy loss is small compared to the electronic energy loss
at the intermediate and high energies considered here. It is also smaller under channelling
conditions than for the ‘random’ case. Therefore the anisotropy in channelling stopping should
be proportional to the valence MSA [48].

In summary, we have extended the OLPA and kinetic theory treatment of electronic
stopping to crystalline targets, re-implemented the methodology in a more efficient and general
code and used the new code to confirm the predicted strong phase effect in Li without reliance
on experimental inputs and to predict minimum stopping anisotropies for graphite.
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